Peer-Reviewed Articles

* = student author, P = project I supervised/was PI of

[22] Eizenhöfer P., McQuarrie N., Mutz S.G., Goshal S., Ehlers T.A. (in review) Topographic evolution of Nepal from Landscape Evolution Models and Paleoclimate Models. Geology.

[21]P *Boateng, D. and Mutz, S. G. (2023). pyESD: An open-source Python framework for empirical-statistical downscaling of climate information. Geoscientific Model Development.

[20]P *Boateng, D., Mutz, S. G., Ballian, A., Meijers, M. J. M., Methner, K., Botsyun, S., Mulch, A., and Ehlers, T. A. (2023). The effects of diachronous surface uplift of the European Alps on regional climate and the oxygen isotopic composition of precipitation. Earth System Dynamics.

[19] Sacek V., Mutz S.G., Ehlers T.A., Bicudo T.C., de Almeida R.P. (2023). Amazonian paleoenvironments resulted from coupled geodynamic, paleoclimate and sea-level interactions. Earth and Planetary Science Letters.
https://doi.org/10.1016/j.epsl.2023.118033

[18]P Mutz S.G. and *Aschauer J. (2022). Empirical Glacier Mass-Balance Models for South America. Journal of Glaciology.
https://doi.org/10.1017/jog.2022.6

[17]P *Ring, S. J., Mutz, S. G., Ehlers, T. A. (2022). Cenozoic proxy constraints on Earth system sensitivity to greenhouse gases. Paleoceanography and Paleoclimatology, 37, e2021PA004364.
https://doi.org/10.1029/2021PA004364

[16]P *Sharma H., Mutz S.G., Ehlers T.A. (2022). The effects of global Cenozoic climate change on frost cracking. Earth Surface Dynamics.
https://doi.org/10.5194/esurf-10-997-2022

[15]P Botsyun S., Ehlers T.A., Koptev A., Böhme M., Methner K., Risi C., Stepanek C., Mutz S.G., Werner M., Boateng D., Mulch A. (2022). Middle Miocene climate and stable oxygen isotopes in Europe based on numerical modeling. Paleoceanography and Paleoclimatology, 37, e2022PA004442.
https://doi.org/10.1029/2022PA004442

[14]P Botsyun S., Mutz S.G., Ehlers T.A., Scherrer D., Xun W., Schmidt B. (2022). Influence of large-scale atmospheric dynamics on Late Cenozoic precipitation seasonality of the Tibetan Plateau and Central Asia. Journal of Geophysical Research – Atmospheres.
https://doi.org/10.1029/2021JD035810

[13]PMutz S.G., *Scherrer S., *Muceniece I., Ehlers T.A., (2021). Twenty-first Century Regional Temperature Response in Chile Based on Dynamical Empirical-Statistical Downscaling . Climate Dynamics.
https://doi.org/10.1007/s00382-020-05620-9

[12]PWang X., Schmidt B., Otto M., Ehlers T.A., Mutz S.G., Botsyun S., Scherer D. (2021). Sensitivity of Water Balance in the Qaidam Basin to the Mid-Pliocene Climate. Journal of Geophysical Research – Atmospheres.
https://doi.org/10.1029/2020JD033965

[11]Mohadjer S., Mutz S.G., Kemp M, Gill S., Ischuk A., Ehlers T.A. (2021). Using paired teaching for earthquake education in schools. Geoscience Communication.
https://doi.org/10.5194/gc-4-281-2021

[10]P Krsnik E., Methner K., Campani M., Botsyun S., Mutz S.G., Ehlers T.A., Kempf O., Fiebig J., Schlunegger F., Mulch A. (2021). Miocene high elevation in the Central Alps. Solid Earth.
https://doi.org/10.5194/se-12-2615-2021

[9]PBotsyun S., Ehlers T.A., Mutz S.G., Methner K., Krsnik E., Mulch A, (2020). Opportunities and Challenges for Paleoaltimetry in Small Orogens. Geophysical Research Letters.
https://doi.org/10.1029/2019GL086046

[8]Mutz S.G. and Ehlers T.A., (2019). Detection and Explanation of Spatiotemporal Patterns in Late Cenozoic Palaeoclimate Change Relevant to Earth Surface Processes. Earth Surface Dynamics.
https://doi.org/10.5194/esurf-7-663-2019

[7]Paeth H., Steger C., Li J., Pollinger F., Mutz S.G., Ehlers, T.A., (2019). Comparison of Climate Change from Cenozoic surface uplift and glacial-interglacial episodes in the Himalaya-Tibet region: Insights from a regional climate model and proxy data. Global and Planetary Change.
https://doi.org/10.1016/j.gloplacha.2019.03.005

[6]Mutz S.G., Ehlers T.A., Werner M., Lohmann G., Stepanek C., Li J., (2018). Estimates of Late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens. Earth Surface Dynamics.
https://doi.org/10.5194/esurf-6-271-2018

[5]Mohadjer S., Ehlers T.A., Bendick R., Mutz S.G., (2017). Review of GPS and Quaternary fault slip rates in the Himalaya-Tibet orogen, Earth Science Reviews.
https://doi.org/10.1016/j.earscirev.2017.09.005

[4]Li J., Ehlers T.A., Werner M., Mutz S.G., Steger C., Paeth H. (2017). Late quaternary climate, precipitation δ 18O, and Indian monsoon variations over the Tibetan Plateau. Earth and Planetary Science Letters.
https://doi.org/10.1016/j.epsl.2016.09.031

[3]Mutz S.G., Ehlers T.A., Li J., Steger C., Paeth H., Werner M., Pouslen C. (2016). Precipitation δ18O over the Himalaya-Tibet Orogen from ECHAM5-wiso Simulations: Statistical Analysis of Temperature, Topography and Precipitation. Journal of Geophysical Research – Atmospheres.
https://doi.org/10.1002/2016JD024856

[2]Li J., Ehlers T.A., Mutz S.G., Steger C., Paeth H., Werner M., Poulsen C., Feng R. (2016). Modern precipitation δ18O and trajectory analysis over the Himalaya-Tibet Orogen from ECHAM5-wiso simulations. Journal of Geophysical Research – Atmospheres.
https://doi.org/10.1002/2016JD024818

[1]Mutz S.G., Paeth H., Winkler S. (2015). Modelling of future mass balance changes of Norwegian glaciers by application of a dynamical-statistical model. Climate Dynamics.
https://doi.org/10.1007/s00382-015-2663-5

Data and Monographs

Mutz S.G. and Ehlers T.A., (2023). Simulated Geomorphically Relevant Palaeoclimate Variables for the Late Cenozoic (from Mutz and Ehlers, 2019). Zenodo.
https://doi.org/10.5281/zenodo.8018119

Mutz S.G., Ehlers T.A., Werner M., Lohmann G., Stepanek C., Li J., (2023). Palaeoclimate Simulations for the Late Cenozoic (from Mutz et al. 2018). Zenodo.
https://doi.org/10.5281/zenodo.8018020

Mohadjer S., Mutz S.G., Kemp M. (2017). Journey to the Center of the Earth: Earth’s interior and plate tectonics, episode 1, Earthquake education, TIB.
https://doi.org/10.5446/47600

Mohadjer S., Mutz S.G., Drews R., Nettesheim M. (2017). Soft rocks and hard liquids: Properties of Earth materials, episode 3, Earthquake education, TIB.
https://doi.org/10.5446/47700

Mohadjer S., Mutz S.G., Amey R. (2017). Do you know your faults? Plate motions and faults, episode 4, Earthquake education, TIB.
https://doi.org/10.5446/47701

Mohadjer S., Mutz S.G., Mitchell L. (2017). What causes that Rock’n’Roll? The earthquake machine, episode 5, Earthquake education, TIB.
https://doi.org/10.5446/47702

Mohadjer S., Mutz S.G., Starke J. (2017). Rocking, rolling and bouncing: How do earthquakes move the Earth?, episode 6, Earthquake education, TIB.
https://doi.org/10.5446/47703

Mohadjer S., Mutz S.G., Nettesheim M., Drews R. (2017). Flow with the sand: Introduction to soil liquefaction, episode 7, Earthquake education, TIB.
https://doi.org/10.5446/47704

Mohadjer S., Mutz S.G., Kemp M., Gill S. (2017). On shaky ground: Structural hazards during earthquakes (Part 1), episode 9, Earthquake education, TIB.
https://doi.org/10.5446/47706

Mohadjer S., Mutz S.G., Gill S., Kemp M. (2017). On shaky ground: Structural hazards during earthquakes (Part 2), episode 10, Earthquake education, TIB.
https://doi.org/10.5446/47707

Mutz S.G. (2015). Dynamic Statistical Modelling of Climate-Related Mass Balance Changes in Norway. Universität Würzburg, Würzburg (Germany).